- Outlines evolution of cellular IoT in four segments leveraging new capabilities with 4G and 5G to tap growth opportunities from industry digitalization
- Introduces Broadband IoT and Industrial Automation IoT as new segments in addition to Massive IoT and Critical IoT
- Launches Massive IoT enhancements and new Broadband IoT solutions on existing LTE networks to enable more advanced use cases
Ericsson today unveiled the next steps in the evolution of cellular IoT and launched new solutions that will enable service providers to address a larger part of the IoT market with diverse use cases across verticals including automotive, manufacturing, and utilities.
Ericsson outlines cellular IoT evolution in four market segments: Massive IoT, Broadband IoT, Critical IoT, and Industrial Automation IoT. Two of these segments are new – Broadband IoT and Industrial Automation IoT. Broadband IoT adopts mobile broadband capabilities for IoT and supports higher data rates and lower latencies than Massive IoT. Industrial Automation IoT will enable advanced industrial automation applications with extremely demanding connectivity requirements.
In line with its cellular IoT vision, Ericsson is launching enhanced functionalities for Massive IoT* and new solutions for Broadband IoT. One example of Massive IoT enhancement is the NB-IoT Extended Cell Range 100km, which stretches the standards-based limit from around 40km to 100km through software updates without changes to existing NB-IoT devices. This opens huge opportunities in IoT connectivity in rural and remote areas, particularly for logistics, agriculture and environment monitoring. Ericsson has deployed NB-IoT data connections up to 100km with Telstra and DISH.
The Broadband IoT solutions being launched include drone detection and link control, radio access network (RAN) slicing, Advanced Subscriber Group Handling, and Multi-Gigabit LTE for 2Gbps data throughput and around 10 millisecond latency. The new solutions will enable a wide range of use cases in automotive, drones, AR/VR, advanced wearables, smart manufacturing, and smart utilities.
Fredrik Jejdling, Executive Vice President and Head of Networks, Ericsson, says:
“Cellular IoT is moving from early adoption with Massive IoT to global rollout. We are now describing ‘what’s next?’ for our customers and how they can make the most out of their 4G and 5G investments on the same network and address more advanced IoT use cases across industries.”
Evolving cellular IoT
Ericsson’s evolution concept describes how cellular IoT can move from the more basic use cases of Massive IoT such as asset tracking and smart metering to increasingly sophisticated use cases enabled by Broadband IoT (for example infotainment in cars, AR/VR, drones and advanced wearables), and then by Critical IoT (for example, autonomous vehicles), and Industrial Automation IoT (for example, collaborative robotics in manufacturing).
This stepwise approach will make it easier for service providers to match cellular IoT capabilities with current and future use cases by continuing to enhance LTE networks while preparing for 5G. With effective use of techniques such as network slicing, service providers can support all four segments in a single network, allowing them to optimize their assets and tap into revenue opportunities within industries. According to the Ericsson Mobility Report, the number of cellular IoT connections is expected to reach 4.1 billion in 2024 – increasing with an annual growth rate of 27 percent.
Patrick Filkins, Senior Research Analyst, IoT and Mobile Network Infrastructure at IDC, says:
“Ericsson has come up with a uniquely clear vision for cellular IoT with well-defined segments for service providers to address new business growth opportunities from industry digitalization. Ericsson’s cellular IoT evolution concept will support service providers to incrementally allow add-on use cases even within a single vertical.”
*Enhanced functionalities for Massive IoT: NB-IoT extended cell range 100km; Cat-M1 & NB-IoT higher throughput; NB-IoT improved network capacity; Cat-M1 & NB-IoT improved device positioning; Cat-M1 improved mobility; and small cells support for NB-IoT
Leave a Reply